Elliptic Curve Cryptography

Joel Allardyce
Nitesh Goyal
April 15, 2004
Outline

- What is Elliptic Curve Cryptography?
- Necessity and Advantages
- Arithmetic of ECC
 - Number Theory
 - Modular Arithmetic
 - Arithmetic mod Irreducible Polynomials
 - Galois Fields
 - The Arithmetic of Elliptic Curves
 - Addition
 - Scalar Multiplication
- Elliptic Curve Cryptography
 - ECC Analogues
 - Menezes-Vanstone ECC
- Conclusion
What is Elliptic Curve Cryptography?

- ECC proposed an alternative to other public-key encryption algorithms, such as RSA.
- All ECC schemes are public key, and are based on the difficulty in solving the discrete log problem for elliptic curves.
Necessity and Advantages

- Compared to RSA, ECC systems have a smaller key size for an equivalent amount of security.
 - Leads to fewer necessary operations, faster encryption time, and fewer transistors for hardware implementation
 - For example: 155-bit ECC uses 11,000 transistors while a 512-bit RSA implementation uses 50,000. These are considered to be of equivalent security. [2]

- Thus, ECC devices require less storage, less power, less memory, and often less bandwidth than other public key systems.

- This might or might not continue to be the case.
Necessity and Advantages (Cont.)

- Current key-size recommended by NIST for legacy public schemes is 2048 bits.
- A vastly smaller 224-bit ECC key offers the same level of security.
- This advantage only increases with security level— for example, a 3072 bit legacy key and a 256 bit ECC key are equivalent [8].
Necessity and Advantages (Cont.)

Figure 1: NIST guidelines for public key sizes for AES (from [8]).

<table>
<thead>
<tr>
<th>ECC KEY SIZE (Bits)</th>
<th>RSA KEY SIZE (Bits)</th>
<th>KEY SIZE RATIO</th>
<th>AES KEY SIZE (Bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>1024</td>
<td>1 : 6</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>3072</td>
<td>1 : 12</td>
<td>192</td>
</tr>
<tr>
<td>384</td>
<td>7680</td>
<td>1 : 20</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>15,360</td>
<td>1 : 30</td>
<td>256</td>
</tr>
</tbody>
</table>
RSA vs ECC

Figure 2: From [8].
Modular Arithmetic

- Familiar to every computer scientist.
- Modulus operation – returns the remainder after integer division.
- Creates equivalency classes:
 - $5 \mod 3 = 2 \mod 3$
 - Because $5 / 3 = 1$ with a remainder of 2
 - Equivalence class of $2 \mod 3$: $\{\ldots, -1, 2, 5, 8, 11, \ldots\}$
Modular Arithmetic (Cont.)

- Operations in Modular Arithmetic reduced with modulus.
 - $6 + 8 \mod 5 = 14 \mod 5 = 4 \mod 5$

- Operations in Modular Arithmetic can be simplified
 - Simpler to first reduce the operands.
 - $6 + 8 \mod 5 = 1 + 3 \mod 5 = 4 \mod 5$

- Similar method used for multiplication
 - $4 \times 5 \mod 11 = 20 \mod 11 = 9 \mod 11$
Modular Arithmetic (Cont.)

- Subtraction is addition of negation
 - \(4 - 5 \mod 7 = 4 + (-5) \mod 7 = 4 + 2 \mod 7 = 6 \mod 7\)

- Division is multiplication of inverse
 - Note: \(4 \cdot 3 \mod 11 = 1 \mod 11\)
 - \(5 / 4 \mod 11 = 5 \cdot 3 \mod 11 = 15 \mod 11 = 4 \mod 11\)
 - Find the inverse by the Euclidian Algorithm (also finds greatest common denominator)
Arithmetic mod Irreducible Polynomials

- Particularly, we are interested in irreducible polynomials with coefficients mod 2.
- Example:
 - $5x^2 + 2x + 3 = 1x^2 + 0x + 1 = x^2 + 1$
 - Represent by a binary coefficient array: $x^2 + 1 = 101$
 - $x^2 + 1$ is irreducible.
- Other 2nd order irreducible polynomials with coefficients mod 2:
 - 111 is the only other one
 - For lower order, also includes 1, 10, 11
 - Notice that the binary representations are all prime numbers.
Arithmetic mod Irreducible Polynomials (Cont.)

- Addition of these polynomials is XOR
 - \((x^2 + 1) + (x^3 + x^2 + x) = (x^3 + x + 1)\)
 - e.g. 0101 + 1110 = 1011
 - Note: This means that addition is subtraction

- Multiplication
 - 0101 * 1110 = 0000

 \[
 \begin{align*}
 &1110 \\
 &0000 \\
 &1110 \\
 &\text{-------------} \\
 &0110110
 \end{align*}
 \]
Arithmetic mod Irreducible Polynomials (Cont.)

- Division

\[
\begin{array}{c}
101 \\
- 1110 | 110110 \\
\underline{1110} \\
001110 \\
\underline{1110} \\
0000 \leftarrow \text{Remainder}
\end{array}
\]
Arithmetic mod Irreducible Polynomials (Cont.)

- So now, the arithmetic:
 - $101 \times 111 \mod 1011 = 11011 \mod 1011$
 - $11011 / 1011 = 11$ with a remainder of 110
 - So, $101 \times 111 \mod 1011 = 110 \mod 1011$

- There is also a version of the Euclidian Algorithm for Irreducible Polynomials, so inverses and greatest common denominator's can be found.
Galois Fields

- What is a field?
- A field is a group of numbers on which addition and multiplication are defined, and which follow the “ordinary” rules:
 - These rules are [3]:
 - Additive Commutativity: \(a + b = b + a \)
 - Multiplicative Commutativity: \(a \cdot b = b \cdot a \)
 - Additive Associativity: \(a + (b + c) = (a + b) + c \)
 - Multiplicative Associativity: \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
 - Distributive: \(a \cdot (b + c) = (a \cdot b) + (a \cdot c) \)
 - Additive Identity: \(a + 0 = a \)
 - Multiplicative Identity: \(a \cdot 1 = a \)
 - Additive Negation: \(a - a = 0 \)
 - Multiplicative Inversion: \(\frac{a}{a} = 1 \) (for a nonzero)
Galois Fields (Cont.)

- Galois fields only exist of size p^n, where p is prime, and n is a natural number.
- When $n = 1$ (i.e. prime sized field), all arithmetic is modular, with p the modulus.
- When $n > 1$ (i.e. prime power sized field), arithmetic is never modular.
 - It is arithmetic of polynomials with coefficients mod p, mod an irreducible polynomial of order n.
Galois Fields (Cont.)

GF(5)

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>.</td>
</tr>
</tbody>
</table>
Galois Fields (Cont.)

GF(2^2) or GF(4)

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th>0</th>
<th>.</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.</td>
<td>.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Elliptic Curves

- **What is an Elliptic Curve?** [1]
 - It is called “elliptic” because of its relationship with elliptic integrals, which are natural expressions for the arc length of an ellipse.
 - A better name might be an Abelian variety of dimension one.
- **How old are they?**
 - They have been around since the 19th century, and were first looked at by Abel, Gauss, Jacobi and Legendre.
 - More recently they were used by Andrew Wiles as part of his solution to Fermat’s Last Theorem.
- **Uses** include factoring integers, primality proving, and of course cryptography.
One important side note [1]:
- The following equations all assume that the field being worked in has a characteristic greater than 3.
- The characteristic of a field is the least positive integer \(n \) such that:
 \[
 \sum_{i=1}^{n} 1 = 0
 \]
 For \(GF(p^k) \), \(n = p \)
- If there is no \(n \) for which this is the case, a field is said to have a characteristic of 0.

If this is not the case, then a different set of equations must be used. We will not enumerate those equation here.
Elliptic Curves (Cont.)

- What do they look like?
 - They are typically represented by the Diophantine equation:
 \[y^2 = x^3 + ax + b. \]
 - The image to the right represents the curve:
 \[y^2 = x^3 - 7x. \]

 It is defined over the Real coordinate plane. Even though it separates into two parts, it is defined by one equation.

 - It also demonstrates addition over this curve (more on that soon)

Figure 3: Geometric composition laws of an elliptic curve (from [4]).
Elliptic Curves (Cont.)

- With the addition of an identity element O_E which is called the “point at infinity”, elliptic curves form an Abelian group over addition [1].
 - A group over an operation:
 - Has associativity
 - Is closed
 - Has an identity element
 - Has inverses
 - An Abelian group
 - Adds commutativity (i.e. $a + b = b + a$)
 - Sometimes called a commutative group

- There are two operations over Elliptic curves:
 - Addition (well defined)
 - Scalar multiplication (actually just multiple additions).
Addition on Elliptic Curves

- First, the ground rules. Let E be the points on an elliptic curve defined over the field \mathbb{F}_2, with the addition of the point $O_E[1]$.
 - All lines in \mathbb{F}_2 intersect E in three places.
 - Lines at infinity intersect E at O_E three times.
 - Vertical lines intersect E at two places, and at O_E.
- Addition occurs as follows [1]. Let A, B be in E.
 - First, draw a line between A and B.
 - Where A and B intersect E for the third time, draw a vertical line.
 - $A + B$ is where this vertical line intersects E a second time.
The general algorithm for addition is[1]:
- Given E: $y^2 = x^3 + ax + b$, $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$, both on E

\[
P_1 + P_2 = \begin{cases}
O_E & \text{if } x_1 = x_2 \& y_1 = -y_2 \\
(x_3, y_3) & \text{otherwise}
\end{cases}
\]

where

\[
(x_3, y_3) = \left(\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1 \right)
\]

and

\[
\lambda = \begin{cases}
\frac{3x_1^2 + a}{2y_1} & \text{if } P_1 = P_2 \\
\frac{y_2 - y_1}{x_2 - x_1} & \text{otherwise}
\end{cases}
\]
Scalar Multiplication on Elliptic Curves

- Scalar Multiplication defined as repeated additions.
 - Given Elliptic Curve E, point P in E, and scalar k.
 - $kP = P + P + P + ... \times k$ times.

- This can be simplified by dividing it into two operations:
 - Double
 - Add P
Scalar Multiplication on Elliptic Curves (Cont.)

- The simplified scalar multiplication algorithm[1]:
 - Given E, P, and k as before, and variable e
 - Step 1: Write k in binary form, let $e = 0$
 - Step 2: Starting at highest order bit of k:
 - Step 2.1: if bit = 0, double e.
 - Step 2.2: else if bit = 1, double e then add P.
 - Step 2.3: repeat 2.1 to 2.3 for each bit in k
 - Step 3: Return e
Elliptic Curve Cryptography

- One-way trapdoor functions are the basis of public key cryptosystems.
 - In ECC, scalar multiplication is the one way trapdoor function.
- All ECC schemes are public key, and are based on the difficulty in solving the discreet log problem for elliptic curves
 - Given $A = kP$, what is k?
- All operations are performed over a Galois Field.
 - So, results of kP seem rather “random”
- There are analogues of most public key systems that use Elliptic Curves
 - e.g. Diffie-Hellman, RSA, etc.
 - Difficulty is that no deterministic method is known for encoding a message into a point on an elliptic curve.
ECC Analogues

- In general, exponentiation over $\text{GF}(p^n)$ is replaced by scalar multiplication of an elliptic curve over $\text{GF}(p^n)$.
 - As mentioned before, the drawback is that there is no known deterministic way of finding a point on an elliptic curve to match a message one wants to hide.
 - Even so, once such a point is found the necessary operations are no more difficult than exponentiation.
 - Of course, this drawback also does not apply to key exchange systems, where symmetric key systems are applied afterwards.
ECC Analogues (Cont.)

- For example, in Diffie-Hellman:
 - Before:
 - Alice and Bob each chose random integers a and b, and selected a field $GF(p^r)$ with generator g.
 - They each calculated g^a and g^b and exchanged these values publicly.
 - They each then found their shared private key by calculating $(g^a)^b$ and $(g^b)^a$.
 - Using ECs:
 - Alice and Bob choose an elliptic curve E over $GF(p^r)$ with a base point P. Once again, they choose random a and b.
 - They calculate aP and bP, and exchange these values publicly.
 - The shared public key is calculated by $b(aP)$ and $a(bP)$.

- Advantage here is that once a key is established a symmetric key method is used.
A similar method is used for the RSA analogue.
 - Unfortunately, this does suffer from the difficulty in encoding a message in a point.

Let us now look at a cryptosystem that attempts to solve the point encoding problem, the Menezes-Vanstone Elliptic Curve Cryptosystem.
Menezes-Vanstone Elliptic Curve Cryptosystem

- The solution to the problem of encoding a message in a point is the Menezes-Vanstone Elliptic Curve Cryptosystem. It was initially proposed in [7].
 - It uses a point on an elliptic curve to “mask” a point in the plane.
 - Works over GF(p), with p prime and p > 3, so our previous algorithms work nicely.
 - It is fast and simple.

- One major drawback.
 - Due to point overhead, encrypted messages are doubled in length.
Menezes-Vanstone Elliptic Curve Cryptosystem (Cont.)

- **Purpose:** Alice wants to send a message to Bob using his public key.
- **Given:** Alice and Bob have decided upon the following conventions, all of which are public.
 - p – A large prime number (it must at least be larger than 3)
 - F_p – A Galois field of size p (p is prime, so it works like modular arithmetic)
 - E – An elliptic curve over F_p of the form $y^2 = x^3 + ax + b$ (a,b in F_p)
 - P – A randomly selected point on E (called the base point) that will generate subgroup H
 - H – A subgroup of E that is preferably of the same size as E
Menezes-Vanstone Elliptic Curve Cryptosystem (Cont.)

- **Private Key:** Bob's private key. Only he knows it.
 - \(a \): Bob's private key is a randomly selected natural number.

- **Public Key:** Bob's public key. Ideally it is distributed to the world.
 - \(\beta \): Bob's public key is calculated as \(\beta = aP \). It is a point in \(H \).

- **Secret:** In this scheme, Alice also has a secret.
 - \(k \): Randomly selected by Alice. It is usually different each time a message is sent.
Menezes-Vanstone Elliptic Curve Cryptosystem (Cont.)

Encryption: Alice has secret m, which she splits up into m_1 and m_2

1. Alice calculates $(y_1, y_2) = k\beta$.
2. Alice calculates $c_0 = kP$. ← Note that c_0 is a point.
3. Alice calculates $c_1 = y_1m_1 \mod p$.
4. Alice calculates $c_2 = y_2m_2 \mod p$.
5. Alice sends encrypted message $c = (c_0, c_1, c_2)$ to Bob.
 Note that c is twice as large as the original message m.

Decryption: Bob wants to get back the message m from c.

1. Bob calculates $ac_0 = (y_1, y_2)$
2. Bob retrieves message m by calculating $m = (c_1y_1^{-1} \mod p, c_2y_2^{-1} \mod p)$
Menezes-Vanstone Elliptic Curve Cryptosystem (Cont.)

- Why does it work?
 - When Alice sends $c = (c_0, c_1, c_2)$ to Bob, he is able to get (y_1, y_2) because:
 - $(y_1, y_2) = k\beta = kaP = akP = ac_0$
 - Notice that this does not really matter what k is.
 - Bob is then able to retrieve $m = (m_1, m_2)$ because:
 - $(c_1, c_2) = (y_1 m_1, y_2 m_2) \mod p$
 - $(c_1 y_1^{-1}, c_2 y_2^{-1}) \mod p = (y_1^{-1} y_1 m_1, y_2^{-1} y_2 m_2) \mod p$
 - $= (m_1, m_2)$

- An eavesdropper in the middle only sees c, which without a is not enough.
Conclusion

- Encryption based on Elliptic Curves provides a framework for the continued use of public key systems.
- ECC systems currently have better security density than other public key schemes.
- There is a trade-off when selecting an ECC system for use
 - Available bandwidth vs. ease of message encoding.
Conclusion (Cont.)

- Most importantly…

Elliptic Curve Math is FUN!!!
Questions?
Sources

Some Fun Stuff

- An interesting [web site](#) we found. Has applets that allow one to try out various systems.
 - The applets:
 - Elliptic Curves
 - ElGamal over EC
 - Menezes-Vanstone ECC