IPSEC

Notes derived from Stallings book
Interesting news

• BGP attack with no authentication
• BGP uses a persistent TCP connection
• Can send RST with few attempts when window size is large
 – As few as 4 guesses needed
• Current TCP spec. says to accept RST as long as in current window
More on the recent attack

- Send RST/SYN to BGP peer through spoofed address
 - Results in resetting the TCP connection
 - BGP peer thinks link is down
 - Could result in route flapping when the real peer sends a “link up” message
 - BGP is designed to dampen “route flaps”
 - when links could come up and down in a short period
 - Dampening leads to longer outages
IPSEC

• Provides authentication, integrity, confidentiality at IP/network layer
 - Transparent to Transport layer & application
• SSL - at Transport layer (TCP)
• PGP - email --at application level
IPSEC

- Operates in two modes
 - Transport mode
 - End-to-end
 - Tunnel mode
 - Involves security gateways
IPSEC modes
IP tunneling

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Dest</td>
</tr>
</tbody>
</table>
| A | D | Payload

A B C D
Internet
IPSEC protocols

- **AH** - Authentication Header
 - Authentication and integrity of payload and header
- **ESP** - Encapsulating Sec. Protocol
 - Confidentiality of payload
- **ESP with ICV (Integrity Check Value)**
 - Authentication, integrity and confidentiality of payload
IPSEC modes, protocols

- Can be combined
- AH transport mode
- AH tunneling mode
- ESP transport mode
- ESP tunneling mode
IPSEC Security Associations

• SA is a one-way relation between sender and receiver established by key exchange mechanisms
• Maintains security characteristics of data transfer from Tx to Rx
• Two-way secure exchange requires two SAs back and forth
What's an SA?

- IPSEC protocol mode:
 - transport, tunnel
- AH information
 - Algorithm, key, key lifetime, parameters
- ESP information
 - Algorithms, keys, key lifetimes etc.
- A sequence number 32-bits
- Anti-Replay window
- Lifetime of SA
More on SA

• SA can be established at different granularities
 - On a host-to-host basis
 - On a user-to-user basis
 - On a session-by-session basis
Authentication

• Provided through MAC on IP packet header data and payload
 - Header fields that change are set to 0
• Provides origin authentication
 - Prevents source address spoofing
• Provides data integrity – through MAC
• Provides optional replay prevention
Authentication Header

<table>
<thead>
<tr>
<th>Bit:</th>
<th>0</th>
<th>8</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Next Header</td>
<td>Payload Length</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Security Parameters Index (SPI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sequence Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Authentication Data (variable)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anti-Replay mechanism

Advance window if valid packet to the right is received

Fixed window size W

marked if valid packet received

unmarked if valid packet not yet received
AH transport mode

AH protocol number = 51

AH in turn points to the original protocol number
AH Tunnel mode

- Transport/tunnel mode is determined by Security Association (SA)
Authentication algorithms

- Employs SHA-1 and MD5 hashes
- Compute the entire hash and truncate to (default) 96 bits to produce ICV
- Mutable fields ignored (set to 0)
 - TTL, IP checksum, authentication data
IPSEC encryption

- Must support DES in CBC mode
- Other algorithms that are supported:
 - 3-key triple DES
 - RC5, IDEA, 3-key triple IDEA, CAST, Blowfish
- Employs MD5 and SHA-1 for authentication (optional)
IPSEC ESP format

Bit: 0 16 24 31

Security Parameters Index (SPI)

Sequence Number

Payload Data (variable)

Padding (0 - 255 bytes)

Authentication Data (variable)

Confidentiality Coverage

Authentication Coverage
ESP Transport mode

IPv4

orig IP hdr
TCP
Data

IPv4

authenticated
encrypted

orig IP hdr
ESP hdr
TCP
Data
ESP trlr
ESP auth
ESP Tunnel mode

IPv4

orig IP hdr | TCP | Data

authenticated

encrypted

IPv4

New IP hdr | ESP hdr | orig IP hdr | TCP | Data | ESP trlr | ESP auth
Combinations of SAs

(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 4

* = implements IPSec
Protocols -- Services

<table>
<thead>
<tr>
<th>Service</th>
<th>AH</th>
<th>ESP (encryption only)</th>
<th>ESP (encryption plus authentication)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access control</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Connectionless integrity</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Data origin authentication</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Rejection of replayed packets</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Confidentiality</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Limited traffic flow confidentiality</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Key Management

- Can be done manually or automated
- Default automated: ISAKMP/Oakley
- Oakley key determination protocol
 - Enhanced Diffie-Hellman algorithm
- ISAKMP - Internet Security Association and Key Management Prot
 - Specifies the specific message formats
Oakley key determination

- Remember Diffie-Hellman?
- Employs a large prime number \(q \) and \(a \), a primitive root of \(q \)
- \(A \) selects random integer \(X_A \), as its private key
- \(A \) computes its public key \(Y_A = a^{X_A} \mod q \)
- Session key = \((Y_B)^{X_A} \mod q = (Y_A)^{X_B} \mod q = a^{X_A X_B} \mod q\)
Attacks on Diffie-Hellman

- **Man-in-the-middle attack**
- **C can pretend to be B to A and pretend to be A to B**
 - A establishes key with C (thinking B)
 - B establishes key with C (thinking A)
- **C can relay messages from A to B, and B to A -can play havoc**
Other Attacks on D-H

• No authentication of IDs of parties
• Clogging/DOS attack
 - Send a lot of requests for session establishment
 - The victim will be busy generating keys
Oakley

- Employs cookies to prevent clogging attacks
- A cookie has to be returned before key generation begins
- If the attacker pretends to be someone else, cannot return the cookie
- Key generation aborted quickly
More on Oakley

• Employs D-H (768, 1024, 1536 bits) and elliptic curve analog of D-H (155, 185 bits) -called groups
• Employs nonces (pseudorandom num) to protect against replay attacks
• Different authentication mechanisms used to thwart man-in-the-middle attacks
Authentication

• Three different methods
• Digital signatures
 - Sign mutually obtainable hash with a private key
• Public-key encryption
• Symmetric key encryption
 - Keys exchanged out of band
Want to learn more?

• Look up RFCs 2401, 2402, 2406, 2408
Summary of today’s class

• IPSEC provides a network layer level security architecture
• Employs AH, ESP protocols and transport, tunnel modes
 - Provides authentication, confidentiality and data integrity
• Employs MAC (MD5/SHA-1) and DES