IP Traceback
Denial Of Service

• Some DOS attacks succeed through spoofing.
• If packets are filtered at network ingress for spoofing
 - Easy to catch the attacker
 - Consequent penalties will deter attackers
• Can control DOS attacks
Ingress filtering
DOS attacks

• Ingress filtering is not widely employed
 - Can be expensive in transit and backbone networks
• How to effectively trace back the source of the attack?
• If successful, may be able to throttle attack traffic at the network ingress
ICMP traceback (Bellovin, IETF)

- Generate ICMP packets with packet header, router and its neighbors ids
- Do this with low probability 1/20,000
- These ICMP packets can be used to trace the source
- More likely to get packets from routers closer to destination, rather than source
IP traceback
(Savage...Sigcomm00)

• Exact Traceback
 - R_6, R_3, R_2, R_1

• Approximate Traceback
 - Valid path suffix
 - R_5, R_6, R_3, R_2, R_1
IP traceback - assumptions

- Attacker can generate any packet
- Attackers may conspire
- Aware of the tracing mechanism
- Attackers send lots of packets
- Packets may be lost, reordered
- Routes are pretty stable
- Routers are memory, CPU limited
IP traceback - Node Append

- Attach each router's IP address to the packet
 - Like IP record route option
- Every packet will have path info
- Too expensive
- Could lead to fragmentation problems
Node Sampling

• Reserve a node field
• Routers write their IP address with probability \(p \)
• Prob. Of receiving id from \(d \) hops
 - \(p(1-p)^{d-1} \)
• \(p > 0.5 \), robust against attacker spoofing
• Routers far away from victim don’t send many packets
 - \(d=15, p=0.51 \), expectation = 42,000 packets
Edge Sampling

• Encode edges of path
 - Rather than single nodes
• Employ three fields
 - Start, end, distance
• With probability p, write Router IP address in start, make distance = 0
• Else, (a) if start already marked, distance=0, put your id in end and
 - (b) increment distance
Edge Sampling

- Tree construction starting from victim (distance =0, 1,...)
- Time for convergence
 - furthest router: $p(1-p)^{d-1}$
- Can use any p, spoofed attacker packets distance field longer
- Robust against multiple attackers
 - Edges are different, linear complexity
- Takes many bits $-32+32+8? = 72$
Edge Sampling -- encoding

- Use XOR of addresses
- R1, 0
- R1 XOR R2, 1
- R1 XOR R2 XOR R3, 2
- Uses roughly half the space
Edge Sampling—Fragment Sampling

Address

Hash(Address)

BitInterleave

Send k fragments into network
Fragment Sampling

Combine k fragments from network

BitDeinterleave

Address?

Hash(Address)?

Hash(Address?)

=?

No → Reject

Yes

Address
Fragment Sampling

- Can compress information into 16 bits
- Use IP fragment identifier space
- Expensive to compute
- Nor robust against large DDOS
Advanced Marking Scheme
Song & Perrig, Infocom01

Figure 2: Encoding in Advanced Marking Scheme I
AMS

- Use two hash functions \(h \) and \(h' \)
- Encode \(h(\text{start}) \ xor \ h'(\text{end}) \)
- Use 11-bits for hash, 5bits for length
- If you know upstream routers, few choices for \(h(s) \), when we know \(h'(e) \)
- Tolerate multiple attackers
 - Upto 60
 - Main limitation: hash collisions
AMS-II

32 bits

R_i IP address

h(.)

h(y, R_i)

y = f ID

Flag ID	Distance (d)	Edge
3 bits | 5 bits | 8 bits

8 bits
AMS-II

• Use two sets of hash functions

• Main intuition:
 - Probability of collision with 11 bits $1/2^{11}$
 - Probability of collision with m hashes of 11 bits $= 1/(2^{11})^m$
 - Multiple hash functions reduce Collisions

• Where did we see that before?
AMS-II

• Tries to work within the space of 11 bits
 - While identifying the hash function
• Easier than FSM
• Much more robust than FSM
FMS False positives
AMS & AMS-II

Figure 7: False Positives for Advanced Marking Scheme

Figure 8: False Positives for Advanced Marking Scheme II
FMS Path reconstruction time

![Graph showing the relationship between Number of Attackers and Reconstruction Time (Seconds). The graph indicates an increasing trend with a label for the Fragment Marking Scheme.](image-url)
AMS Path Reconstruction times

![Graph showing reconstruction time versus number of attackers for different schemes.](image)
Summary of today's class

• Traceback is an interesting idea
• Allows us to trace the origin of the attack
• Threat of Identification leads to reduction in attacks
• What about the viruses?
 - Innocent attackers