ELEN627 Lecture 3

- Review of last class
- JPEG

JPEG Goals

- JPEG = Joint Photographic Experts Group
- Encoder should be parameterizable
 - Applications can tune compression level
- To be applicable to any continuous tone digital image
- Should have tractable computational complexity
- Should be possible to implement in hardware
JPEG Goals

- Should have the following modes of operation
 - Sequential Encoding
 - Encode image in multiple scans
 - Allow image to be built from coarse to fine quality
 - Allows easier transmission
 - Lossless encoding
 - Should allow lossless encoding if desired
 - Hierarchical Encoding
 - Encode at multiple resolutions
 - Lower resolution image available without decompressing to full resolution

JPEG Goals

- Compression scheme should be independent of data format
 - PAL/NTSC etc. shouldn’t change things
 - Independent of picture size, colors, aspect ratio
- Each picture consists of many components
 - Components can be YUV, RGB, YIQ etc.
- Components can be of different sizes
 - Allows subsampling - compression is independent
JPEG Compression stages

- Preparation of Data blocks
 - Each component broken into a series of 8x8 data blocks
 - Component by component
 - From Top-left to Bottom-Right

- Source Encoding Step
 - Discrete Cosine Transform
 - Quantization

- Entropy Encoding Step
 - Run length coding
 - Huffman or Arithmetic coding

- Decompression reverses these steps

Data preparation

- Convert each component into 8x8 data blocks
 - Component size and number of components may vary
Forward DCT

- Apply DCT to generate 64 new samples
- DC coefficient normally has most of the information
 - An 8x8 block of one color will only have DC coefficient
- Changes are smooth
 - Low frequency components more likely
- Sharp black line on a white background
 - Produces high frequency components
- Encode non-zero values

Quantization

- $F^Q(u, v) = \text{IntegerRound}F(u, v)/Q(u, v)$
- DC coefficient treated separately
 - Strong correlation of DC component between data blocks
 - Encode it based on differential techniques
- Non-DC components sorted in zig-zag order
 - Lower frequency components come first
- Do entropy coding on non-DC components
 - JPEG allows Huffman encoding, Arithmetic encoding
 - Codebooks can be application dependent
Interleaving multiple components

- When image has multiple components
 - May want to interleave encoding of components
 - Progressive display of the image at the receiver

- Notion of Minimum Coded Unit (MCU)
 - JPEG allows up to 4 components in one MCU
 - Up to 10 blocks in one MCU
 - Application can decide how to do this

Progressive Encoding

- Spectral Selection
 - Send lower frequency components first
 - Send higher frequency components later

- Image initially will be blurred
 - Sharpness improves with higher frequency components

- Receiver gets a feel for the image at progressive quality

- Successive Approximation
 - Send only MSBs of encoded values first
 - Send LSBs later

- Again Image is progressively better
Hierarchical Encoding

- Also called Pyramidal Encoding
- Subsample the original image
 - Multiples of 2 in X and Y dimensions
- Code the subsampled image as a first stream
- Decode the subsampled image
- Upsample the decoded image
- Subtract from the original image
- Encode the difference as a second stream
- Can vary the number of layers

Hierarchical Encoding

- Greater Storage demands at the encoder
 - Need multiple versions of image
- A form of progressive encoding
 - Progression in spatial resolution
- Can increase data rate up to 33%
 - $N^2(1 + 1/4 + 1/16 + ...) \leq 4N^2/3$
- Hierarchical mode better at low bit rates than other techniques
- Downsampling filter is not specified in JPEG
- Upsampling filter
 - Interpolated value = truncated average of two lower resolution pixels